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Exascale Challenges 

  Compared to today’s CPU processors, Exascale machines may see:  
  O(100x) increase in peak flops per chip 
  Massive (>>100x) increase in on-chip parallelism (<<GHz? for NTV) 
  O(<<100x) increase in (fast) DRAM bandwidth 
  systems with ~100,000 nodes (or more) 
  minimal reductions (or possible increases) in latencies and overheads 

  A number of performance challenges will emerge or persist. 
  At 100K nodes, the performance of collectives can be poor. 
  Codes will become increasingly memory-bound 
  The massive increase in parallelism will challenge the straightforward 

application of OpenMP to loop nests (finite parallelism in loop nests) 
  Communication/Synchronization overheads may impede performance. 
  Serial components receive a triple whammy: 

•  Amdhal’s Law 
•  in-order scalar cores 
•  lower frequency 
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Benchmarks… 

  Benchmarks/compact apps that have… 
  massive, regular, static parallelism within each loop nest, 
  poor surface:volume ratios, 
  regular communication patterns with large messages, 
  minimal use of collectives 

  …will likely run well on exascale machines. 
  Porting such codes to exascale tends to be a software engineering 

task, not a CS research challenge. 

  We wish to focus on benchmarks that… 
  represent key/fundamental computational characteristics of applications 
  will be a challenge to run on exascale architectures (make for 

interesting CS, AM, and co-design research projects) 
  We have thus focused on multigrid… 
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Multigrid Introduction 

  Linear Solvers (Ax=b) are ubiquitous in scientific computing... 
  Combustion, Climate, Astrophysics, Cosmology, etc…  

  Multigrid exploits the nature of elliptic PDEs to provide a hierarchical 
approach with O(N) computational complexity. 
  Geometric Multigrid is specialization in which the linear operator (A) is 

simply a stencil on a structured grid (i.e. matrix-free) 
  Applicable to small (yet very important) range of linear systems 
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miniGMG: Specification 
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Collection of 
subdomains 
owned by an 
MPI process 

one subdomain 
of 643 elements 

  Cubical domain decomposed into subdomains 
 (“boxes”) and distributed across a machine. 
  Fine-grid box size is selectable. 

  smaller boxes mimic AMR MG challenges 
  fewer boxes per process can be used to 
 mimic some AMR MG combustion codes. 

  Nominally, problems are usually small enough 
 to fit into Xeon Phi or GPU device DRAM => 
 no PCIe transfers are required. 
  Gauss Seidel, Red-Black (“GSRB”) relaxation in the v-cycle 

  (other smoothers / stencils can be used) 
  Configurable U-cycle (default stops at 43 subdomains) 
  Selectable bottom solver 

  GSRB’s, BiCGStab, CG, CA-BiCGStab, CA-CG, etc…  
  Fixed 10 V-cycles 
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GSRB Operator 

  High-performance baseline implementation… 
  construction of the Laplacian, Helmholtz, and GSRB relaxation have 

been fused to minimize data movement (=2x performance gain).  
  Hybrid MPI+OpenMP implementation where everything is threaded 

6 

L = aαI – b∇β∇ 

helmholtz = a*alpha[i,j,k]*phi[i,j,k] - b*h2inv*( 
  beta_i[i+1,j,k] * ( phi[i+1,j,k] - phi[i  ,j,k] ) - 
  beta_i[i  ,j,k] * ( phi[i  ,j,k] - phi[i-1,j,k] ) + 
  beta_j[i,j+1,k] * ( phi[i,j+1,k] - phi[i,j  ,k] ) - 
  beta_j[i,j  ,k] * ( phi[i,j  ,k] - phi[i,j-1,k] ) + 
  beta_k[i,j,k+1] * ( phi[i,j,k+1] - phi[i,j,k  ] ) - 
  beta_k[i,j,k  ] * ( phi[i,j,k  ] - phi[i,j,k-1] ) 
) 

phi[i,j,k] = phi[i,j,k] –  
  lambda[i,j,k] * ( helmholtz - rhs[i,j,k] ) 
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miniGMG Challenges 

 Code has little reuse and large working sets: 
  VC 2nd order => DRAM bandwidth-bound (flop:byte ~ 0.2) 
  Cache working set ~350KB(planes) & >20MB(volume) per subdomain 
  Only 1 stencil sweep per MPI communication step 
  Small subdomains = significant time in communication  
      (poor surface:volume) 

 Quadruply nested parallelism: 
  no individual loop longer than 64 iterations (bad for OpenMP) 
  worse, 3 loops see exponentially decreasing parallelism 

 Communication is variable and can become a bottleneck 
  P2P MPI is initially a small fraction of the time, but as one descends 

through the v-cycle, it becomes a bottleneck (message size doesn’t 
decrease at the same rate as computation). 

  Worse, Krylov bottom solvers are not O(N) and require collectives 
 (become bottlenecks when weak scaled) 
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Research Projects using miniGMG 

  Currently using miniGMG for research into… 
  Processor and network exploration/extrapolation XTune/ExaCT 
  Communication-avoiding smoothers   CACHE 
  Compiler-based (CHiLL) smoother optimization XTune 
  Communication-avoiding (bottom) Krylov solvers CACHE/ExaCT 
  Numerical Challenges in CA Bottom Solvers  CORVETTE 
  Algorithmic exploration of FMG (F-Cycle)  XTune 
  High-order operators    XTune/ExaCT  
  Programming models (omp task/Habanero)  DEGAS 
  PGAS for P2P communication (UPC/CAF)  DEGAS 
  Resource management    DEGAS 
  Automatic overlap of communication/computation BAMBOO at UCSD 

  I will detail a few here… 
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Communication-Avoiding 
Smoothers (CACHE/Xtune) 
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  Restructure the smooth( )’s in the V-cycle to: 
  load thick ghost zones 
  perform some (inter-process) redundant computation 
  and in effect, fuse multiple smooth( )’s together.  

  High-performance wavefront 
 implementations require 

  require fine-grained synch. 
  parallelization in 2D or 3D 
  Software prefetching to overlap 
 communication and computation 
  SIMDization of GSRB kernels 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Communication-Avoiding 
Smoothers (CACHE/Xtune) 
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Comm. Avoiding 
Optimized CUDA 
Baseline CUDA 
Nested OpenMP 
Baseline OpenMP 

  Restructure the smooth( )’s in the V-cycle to: 
  load thick ghost zones 
  perform some (inter-process) redundant computation 
  and in effect, fuse multiple smooth( )’s together.  

  High-performance wavefront 
 implementations require 

  require fine-grained synch. 
  parallelization in 2D or 3D 
  Software prefetching to overlap 
 communication and computation 
  SIMDization of GSRB kernels 

  Benefit can be significant even 
 on manycore architectures like 
 Intel’s Xeon Phi. 
  However, automation is a challenge 
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Communication-Avoiding 
Bottom Solvers (CACHE/ExaCT) 

  In geometric multigrid, one is often forced to switch to a Krylov 
solver when further restriction of the grid become infeasible. 

  Unfortunately… 
  iterative Krylov methods are not O(N).  
 Thus, weakly scaled problems require 
 far more iterations to converge. 
  Worse, global dot products are 
 required on every Iteration. 
  As the performance of collectives like 
 MPI_AllReduce( ) do not scale well, 
 these global dot products amplify 
 the bottom solver challenge. 

  Solution is to change the algorithm so 
 that it aggregates these collectives 
 together.  (see poster by Erin Carson, 
 Nick Knight, and Sam Williams) 
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Numerical Challenges in 
Comm.-Avoiding Krylov Solvers 

  Communication-avoiding Krylov Methods are parameterized by 
‘s’ (the number of steps in an s-step method). 

  As ‘s’ increases, effects of finite precision are manifested. 

  Increased precision or alternate formulations may address this. 
  Is simply changing the loop vectors to double-double sufficient? 
 or must one change the entire computation? 
  Nominally, double-double is shunned due to cost. 
  However, bottom solvers are tiny and usually latency-limited. 
  Perhaps the additional cost can be amortized by MPI_WaitAll( ) or 

MPI_AllReduce( ) time 

  See Corvette(Xstack) poster (Cindy Gonzalez, Costin Iancu, …) 
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Habanero 
(DEGAS) 

  The best communication-avoiding implementations on BGQ and 
especially MIC are extremely complicated. 
  Multiple thread teams map to inter- and intra-box parallelism. 
  Teams of threads must be placed compactly.  This is analogous to a 

CUDA thread block with the caveat that the team can grow as large as 
the chip (not just the SMX) 

  On MIC, one must manually orchestrate parallelism, locality, and 
synchronization via a omp parallel region. 

  We are exploring Habanero as a productive alternative. 
  an architecturally-derived HPT can be constructed 
  async’s can be inserted into specific nodes to balance inter- and intra-

box parallelism 

  Costin and Vivek can detail progress to date… 
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PGAS for Fast Communication 
(DEGAS) 

  Progressive optimization of on-node computation (e.g. DRAM 
communication-avoiding, threading, SIMD, etc…) can result in P2P 
MPI communication becoming a performance bottleneck. 

  We are exploring the use of UPC to accelerate this data exchange. 

  Costin Iancu / Nick Vrvilo will explain tomorrow… 
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Questions? 
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